

Algorithm to color a Circuit Dual Hypergraph for
VLSI Circuit

Bornali Gogoi#1, Bichitra Kalita*2
#Department of Computer Application,

Assam Engineering College, Gauhati University
Jalukbari, Guwahati-781013, Assam, India

Abstract— Line-of-sight graph is used to check the number

of short circuit testing needed to test a printed circuit board.
This paper presents a simple algorithm based on some
assumptions to put color in a circuit dual hypergraph of a
VLSI circuit. The structures of line-of-sight graphs with 10, 11,
12 and 13 colors have been established. This algorithm can be
used to find out number of short circuit testing needed for a
VLSI printed circuit board.

Index Terms— Line-of-sight graph, short circuit testing,
VLSI circuit, circuit dual hypergraph.

I. INTRODUCTION
 Graphs are used in different areas in computer science.
Circuit dual hypergraphs are used to represent a circuit using
a graph. A special type of these graphs have been
represented which shown their possible placement in the
printed circuit board [10]. These types of circuit dual
hypergraphs are placed in the printed circuit board
considering an algorithm [11]. This algorithm has been
considered for the planar triangulated graphs. It has been
found that the graph coloring is used in many applications
like scheduling and assignment problems [3]. An undirected
graph G {V, E} can be colored using vertex coloring and
edge coloring. A (vertex) coloring of a graph G is a mapping
c : V(G) -> S. The elements of S are called colors; the
vertices of one color form a color class. If |S| = k, we say that
c is k-coloring (often we use S = {1, …, k). A coloring is
proper if adjacent vertices have different colors. A graph is
k-colorable if it has a proper k-coloring. The chromatic
number c(G) is the least value of k such that G is k-colorable.
Obviously, λ(G) exists as assigning distinct colors to
vertices yields a proper |V(G)|-coloring. An optimal coloring
of G is a λ(G)-coloring. A graph G is k-chromatic if λ(G) =
k. Obviously, the complete graph Kn requires n colors, so
λ(Kn) = n. Then λ(G) ≥ ω(G) where ω(G) is the weight of the
graph G. This bound can be tight, but it can also be very
loose. Indeed for any given integers k ≤ l, there are graphs
with clique number k and chromatic number l [12]. General
graph coloring algorithms are well known and have been
extensively studied by the researchers [5, 6]. A graph has
been colored, considering the vertex with minimum degree
first [2]. Then the graph considered will contain all the
vertices excluding already considered vertex. Many
algorithms have been found for graph coloring. Amongst
them first fit and degree based ordering techniques are

placed. First Fit algorithm is the easiest and fastest
technique of all greedy coloring heuristics. The algorithm
sequentially assigns each vertex the lowest legal color. This
algorithm has the advantage of being very simple and fast
and can be implemented to run in O(n)[8,9]. Degree based
ordering provides a better strategy for coloring a graph. It
uses a certain selection criterion for choosing the vertex to
be colored. This strategy is better than the First Fit which
simply picks a vertex from an arbitrary order. Some
strategies for selecting the next vertex to be colored have
already been proposed and remind us as follows:
a. Largest degree ordering (LDO): It chooses a vertex with

the highest number of neighbors. Intuitively, LDO
provides a better coloring than the First Fit. This heuristic
can be implemented to run in O(n2)[8,9].

b. Saturation degree ordering (SDO): The saturation degree
of a vertex is defined as the number of its adjacent
differently colored vertices. Intuitively, this heuristic
provides a better coloring than LDO as it can be
implemented to run in O(n3)[8,9].

c. Incidence degree ordering (IDO): A modification of the
SDO heuristic is the incidence degree ordering. The
incidence degree of a vertex is defined as the number of its
adjacent colored vertices. This heuristic can be
implemented to run in O(n2)[8,9].
The applications of graph coloring are found in Guarding

an Art Gallery, Physical Layout Segmentation,
Round-Robin Spots Scheduling, Aircraft Scheduling,
Biprocessor Tasks, Frequency Assignment, Map Coloring
and GSM Mobile Phone Networks [16, 17] etc. Graph
coloring is also used for short circuit testing in VLSI
physical design.

II. ALGORITHM TO COLOR A CIRCUIT DUAL GRAPH TO

GET A LINE-OF-SIGHT GRAPH
In large PCBs like VLSI, the modules are placed in

priority wise while designing them. First few modules
placed and connections are made among them. Then they are
checked for short circuits. After taking care of the problems
arise in this already placed and connected modules, as the
next step, few more modules will be placed. Connections
will be made among the newly placed modules and the
modules placed in the first phase. Again all sorts of testing
will be done on this second phase modules including short
circuit testing. This process will be repeated phase-wise till

Bornali Gogoi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5047-5052

www.ijcsit.com 5047

all the modules are placed in the board and desired
connections are established among them. Each and every
module is utilized to its maximum.

Graph coloring algorithms focused before, as some are

stated above, have not been considered the method of
coloring for a line-of-sight graph which has been discussed
here. Therefore, the number of colors needed to color the
line-of-sight graph, as derived by those graph coloring
algorithms, will be different from the actual number of
short-circuit testing needed in physical design time in VLSI
physical design.

Considering this concept, an algorithm has been

established to color a circuit dual graph to get the actual
number of short-circuit testing needed to design a circuit
from it as followings.

A. Algorithm to color the circuit dual graph

Step 1: Consider the priority assigned to the circuits
(vertices) of the board (circuit dual graph).

Step 2: Place the modules on the board based on priority
basis. Highest priority modules will be placed in
the first phase. Connect these modules as desired.

Step 3: Put color on these modules accordingly to get the
respective line-of-sight graph. Find out the number
of short circuit testing needed.

Step 4: In the second phase, place the next highest priority
modules. Repeat step 2 and 3. Total number of
short circuit testing needed is same as the number
of colors needed for the resulting line-of-sight
graph.

Step 5: Repeat step 2 – 4 till all the modules are placed on
the board to get the final line-of-sight graph for that
circuit dual graph.

Step 6: The total number of colors used to color the circuit
dual graph is the actual number of short circuit
testing needed to physically design the VLSI circuit.

Since it has been known that numerous modules are placed
in VLSI printed circuit board. Therefore, it is not possible to
place all the modules in one time, to make the connections
among them and then test for short-circuit. The VLSI
designers opt for a process where they place the modules in
phase-wise manner. While using the circuits, designer
always utilize one circuit to its optimum level. So, in phase
manner, the VLSI designers design the whole board and
give them for physical design. Therefore, the total number of
short-circuit testing may be different from the number of
colors shown by different algorithms placed earlier.

B. Proof:
We are considering the following circuit dual graph G(74,

214) in figure 1 to apply the given algorithm. Numbers
given for the vertices are the priority given to each of these
modules. Highest priority modules will be placed in the first
phase. Priorities are in decreasing order of 1, 2, … .

Figure 1: A circuit dual graph G (74, 214)

Step 1: The priorities of each of these modules are shown
inside each vertex using numbers. Lower the number higher
is the priority.
Step 2: All the modules with priority 1 & 2 are placed on the
board and give the connections as desired.
Step 3: As per the connection, we can place it on the board
and put color in it as shown below in figure 2:

Figure 2: Line of sight graph of figure 1 after placing

priority module 1

Step 4: The following figure 3 is obtained after going
through step 4.

Figure 3: Line of sight graph of figure 1 after placing

priority module 1 & 2

Bornali Gogoi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5047-5052

www.ijcsit.com 5048

Step 5:
1st Repetition: Figure 4 after 1st repetition:

Figure 4: After placing modules with priority 1, 2 & 3

2nd Repetition: Figure 5 after 2nd repetition:

Figure 5: After placing modules with priority 1, 2, 3 & 4

3rd Repetition: Figure 6 after 3rd repetition:

Figure 6: After placing modules with priority 1, 2, 3, 4 & 5

4th Repetition: Figure 7 after 4th repetition:

Figure 7:After placing modules with priority

1, 2, 3, 4, 5 & 6

5th Repetition: Figure 8 after 5th repetition:

Figure 8:After placing modules with priority

1, 2, 3, 4, 5, 6 & 7

6th Repetition: Figure 9 after 6th repetition:

Figure 9: After placing modules with priority 1, 2, 3, 4, 5, 6,

7& 8

Bornali Gogoi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5047-5052

www.ijcsit.com 5049

7th Repetition: Figure 10 after 7th repetition:

Figure 10: After placing modules with priority 1, 2, 3, 4, 5,

6, 7, 8 & 9

8th Repetition: Figure 11 after 8th repetition:

Figure 11: After placing modules with priority 1, 2, 3, 4, 5,

6, 7, 8, 9 & 10

9th Repetition: Figure 12 after 9th repetition:

Figure 12: After placing modules with priority 1, 2, 3, 4, 5, 6

, 7, 8, 9, 10 & 11

10th Repetition: Figure 13 after 10th repetition:

Figure 13: After placing modules with priority 1, 2, 3, 4, 5, 6

, 7, 8, 9, 10, 11 & 12

11th Repetition: Figure 14 after 11th repetition:

Figure 14: Line-of-sight-graph with 13 colors

The structure of this graph G(74, 214) is as shown

in Figure 15 below.

Figure 15: 13 colored line-of-sight graph with degree of

each vertex

Bornali Gogoi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5047-5052

www.ijcsit.com 5050

It is found that the structure of the graph (Figure 15) has 1, 4,
2, 2, 4, 1, 8, 8, 13, 13, 17, and 1 numbers of vertices with
degree 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 respectively.

C. Different structures found:
We are finding out the structure of a series of

line-of-sight-graph with ten (10), eleven (11) and twelve
(12) colors following the assumptions of the above stated
algorithm.

i. Line-of-sight-graph with ten (10) colors:
One possible structure of this graph is as in Figure 15a

below as G1(27, 74).

Figure 15a: 14 colored line-of-sight-graph
It is found that the structure of the graph (Figure 17) has 4,

1, 4, 2, 5, 6, and 5 numbers of vertices with degree 9, 8, 7, 6,
5, 4, 3 respectively.

The structure with mentioning the degree is as shown in

Figure 15b G1(27, 74) below.

Figure 15b: 10 colored graph with degree

ii. Line-of-sight-graph with eleven (11) colors:

Line-of-sight-graph with 11 colors is drawn as shown in
Figure 16 G2(41, 113) below.

 Figure 16: Line-of-sight-graph with 11 colors

The structure of this graph G2(41, 113) is as shown in Figure
17 below.

 Figure 17: 11 colored line-of-sight graph with degree of
each vertex

It is found that the structure of the graph (Figure 17) has 4,

1, 1, 7, 3, 8, 9, and 8 numbers of vertices with degree 10, 9,
8, 7, 6, 5, 4, 3 respectively.

iii. Line-of-sight-graph with twelve (12) colors:

Line-of-sight-graph with 12 colors is drawn as shown in

Figure 18 G3(53, 149) below.

Figure 18: Line-of-sight-graph with 12 colors

Bornali Gogoi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5047-5052

www.ijcsit.com 5051

The structure of this graph G3(53, 149) is as shown in
Figure 19 below.

Figure 19: 12 colored line-of-sight graph with degree of

each vertex
It is found that the structure of the graph (fig19) has 4, 1, 3,

3, 6, 5, 9, 10, 11, and 1 numbers of vertices with degree 11,
10, 9, 8, 7, 6, 5, 4, 3, 2 respectively.

III. CONCLUSION
This algorithm can be applied to test a VLSI circuit board

for short circuit. The difference among the previously
established algorithms and this one is the way of placing
modules on the board. This algorithm follows phase-wise
placement of modules which is practically used to design a
VLSI circuit board. So, the number of colors needed to draw
the line-of-sight graph in this paper is totally different from
the previously established graph coloring algorithms. The
above shown structures will need nC2 number of short circuit
testing where n is the number of colors used if followed the
assumptions as stated above. The same graph may give
different color if followed the algorithm discussed in [14].
But considering the process used in designing a board in
VLSI, we found these graphs will need 12 or 13 colors as
shown in this paper.

REFERENCES
[1] M. Sarrafzadeh and C. K. Wong, “An Introduction to VLSI Physical

Design”, McGraw-Hill International editions, International edition
1996

[2] M. R. Garey, D. Stifler and Hing C. So, “An application of graph
coloring to Printed Circuit Testing”, IEEE Transaction on Circuit and
Systems, Vol. CAS-23, No. 10, October 1976.

[3] Meena Bharti and Sahil Singla, “Review of Graph Coloring and its
Applications”, International Journal of Applied Engineering
Research, ISSN 0973-4562 Vol.7 No.11, 2012.

[4] A web link last modified on 3 Sept 2012 at 06:59
http://en.wikipedia.org /wiki/ Graph_coloring.

[5] Alon N., “A Note on Graph Colorings and Graph Polynomials,”
Journal ofCombinatorial Theory SeriesB, vol. 70, no. 1, pp. 197-201,
1997.

[6] Baldi P., “On a Generalized Family of Colorings,” Graphs and
Combinatorics, vol. 6, no. 2, 1990.

[7] Dr. Hussein Al-Omari and et. al., “New Graph Coloring Algorithms”,
American Journal of Mathematics and Statistics 2 (4): 739-741, 2006,
ISSN 1549-3636.

[8] Klotz, W., 2002. Graph coloring algorithms:
www.math.tuclausthal.de/ Arbeitsgruppen/ Diskrete Optimierung
/publications / 2002/ gca.pdf

[9] Gebremedhin, A.H., 1999. Parallel Graph Coloring. Thesis University
of Bergen Norway Spring.

[10] Bornali Gogoi , Bichitra Kalita, “ Special Type of Circuit Dual
Hypergraph”, International Journal of Information and
Communication Technology Research, Volume 1 No. 6, October
2011, ISSN-2223-4985.

[11] Bornali Gogoi , Bichitra Kalita, “Algorithm for Designing VLSI
Floorplan using Planar Triangulated Graph”, International Journal of
Information and Communication Technology Research, Volume 2
No. 7, July 2012, ISSN 2223-4985

[12] F. Havet, “Graph colouring and applications” Projet Mascotte,
NRS/INRIA/UNSA, INRIA Sophia-Antipolis, 2004 route des
Lucioles BP 93, 06902 Sophia-Antipolis Cedex, France.

[13] Narasingh Deo, “Graph theory with applications to engineering
andcomputer science”, Prentice Hall of India, 1990.

[14] Shariefuddin Pirzada and Ashay Dharwadker, “Journal of the Korean
Society for Industrial and applied Mathematics, Volume 11, No.4,
2007

Bornali Gogoi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5047-5052

www.ijcsit.com 5052

